Cosmology - Cosmic Microwave Background (CMB)

Cosmic Microwave Background (CMB)

The Cosmic Microwave Background (CMB) is the remnant of the hot and dense early phases of the Universe. Its blackbody spectrum peaks around 2 mm (150 GHz) and its intensity dominates the high Galactic latitude sky at all wavelengths from about 20 cm to about 500 µm. Soon after the its discovery, in 1965, it was realized that the density fluctuations that seeded all the structure seen today must have imprinted tiny anisotropies in the CMB temperature, first detected in 1992 by NASA's COBE satellite. The power spectrum of CMB anisotropies encodes detailed information on the key cosmological parameters. An impressive series of experiments, culminating in the presently flying NASA's Wilkinson Anisotropy Probe (WMAP), have led to determine that the universe is close to spatially flat, it is dominated by dark energy, accounting for about 70% of the present cosmic energy density, by dark matter comprising about 85% of the matter density, and that primordial fluctuations had a nearly scale-invariant spectrum, consistent with having emerged from a primordial inflationary phase. In the inflationary scenario, vacuum energy dominated the energy density of the universe during its first moments, driving an exponential expansion which stretched a microscopic patch to a size much larger than our visible universe and making its geometry flat to high accuracy.

Primordial inflation also allows us to put constrains on the origin and the statistical properties of the primordial perturbations. The tremendous inflationary expansion bridges the gap between the subatomic length scales, on which quantum fluctuations are generated, and astrophysical scales, relating the seeds of the structure we observe in the universe to quantum fluctuations originated some 10^(-35) seconds after the big bang. In other words, from CMB anisotropies, that are directly related to the primordial density fluctuations, we learn about physical processes occurring at extreme energies, unattainable in any conceivable accelerator on Earth. Thus studies of the CMB bring us to the deepest questions about the origin of the universe. Although the inflationary scenario provides an impressive set of answers, the underlying physics is not well understood, and we need to dig more deeply into the extraordinary wealth of information contained in CMB maps.The next step in this direction is the Planck satellite, developed by the European Space Agency as the definitive mission for the study of CMB temperature anisotropy on scales down to 5 arcmin and as big step forward towards all-sky measurements of CMB polarization. Within the international Planck Consortium, the Padova group is leading the "component separation" effort for the Planck Low Frequency Instrument. The aim of this effort is, on one side, the cleaning of the CMB maps produced by Planck in the frequency range 30 - 860 GHz from the astrophysical signals superposed on it, and, on the other side, the reconstruction, as accurately as possible, of each individual foreground component, which has its own astrophysical interest.

Cosmic Microwave Background (CMB) - PAST STUDIES


Il notiziario online dell'Istituto Nazionale di Astrofisica
  • «Ho ancora un sogno prezioso, custodito gelosamente da tempo immemore: poter osservare la volta tersa e stellata del cielo e poterne scorgere il fascino con i miei stessi occhi». Un sogno che l’autrice di questo articolo, Patrizia Faccaro, affetta da retinite pigmentosa, potrà realizzare domani, sabato 14 luglio, all’Osservatorio di Serra La Nave dell’Inaf di Catania

  • Usando in sinergia la potenza dei telescopi spaziali Hubble e Gaia, gli astronomi hanno ottenuto la misurazione a oggi più precisa del tasso di espansione dell'universo: 73.5 km/s per megaparsec. Un risultato che sancisce l’incompatibilità fra il tasso di espansione dell'universo vicino e quello del lontano universo primordiale derivato dalle misure del satellite Planck

  • Tra fotografie ravvicinate ad alta risoluzione, immagini stereoscopiche da ammirare in tre dimensioni e gif animate, il rugoso asteroide a forma di diamante continua a offrirci uno spettacolo senza precedenti

  • Nell’immagine ottenuta con le 64 antenne a parabola del radiotelescopio MeerKat, inaugurate oggi nel deserto del Karoo, è possibile vedere i filamenti che disegnano il centro della nostra galassia: scoperti negli anni Ottanta, sono ancora un mistero per gli scienziati

  • Ecco come un team a guida italiana ha condotto le indagini che hanno portato a incastrare definitivamente il blazar Txs 0506+056 come responsabile del neutrino ad alta energia rivelato il 22 settembre 2017 da IceCube. I risultati sono stati pubblicati su Mnras

  • Per la prima volta si è visto un oggetto celeste emettere sia fotoni sia neutrini. Con il consenso dell’autrice, l’astrofisica dell’Inaf Patrizia Caraveo, vi riproponiamo questo articolo pubblicato sul Sole 24 Ore

Go to top

We use cookies to improve our website and your experience when using it. Cookies used for the essential operation of the site have already been set. To find out more about the cookies we use and how to delete them, see our privacy policy.

I accept cookies from this site.

EU Cookie Directive Module Information