Cosmological simulations

Until a few years ago, studies of galaxy formation have been affected by uncertainties both in the underlying cosmology as well as in the most relevant physical processes. Now we are in the so called "precision cosmology" era, which means that the background model is relatively well defined by a wealth of observations, in particular those of fluctuations in the cosmic micro-wave background. So, we can compute with reasonable confidence the evolution of the dynamically dominant dark matter (DM) component, ruled by gravity. Starting from a reasonable spectrum of primordial density fluctuations, over-density regions above the linear regime collapse into sheets and filaments. Then, matter mainly flows along filaments into dark matter halos. These halos merge to form bigger and bigger halos (hierarchical clustering).The general outcomes of these gravity-only simulations confirm and deepen those obtained by means of analytical analysis, yielding a broad outline of the formation of cosmic structures: galaxies and clusters. Indeed, a full understanding of the processes leading to the formation of cosmic structures, galaxies in particular, would require the much more demanding task of treating the complex physic of luminous (baryonic) matter. Galaxy formation, which occurs in DM halos, involves a complex web of processes: merging of dark matter halos, cooling of gas, collapse and star formation from cold gas, energy input into gas from SNae explosions and winds (energetic feedback), chemical enrichment of gas and stars (chemical feedback), galaxy mergers, luminosity evolution of stellar populations, absorption of starlight by dust and re-emission in IR+sub-mm, formation of super massive black holes, the ensuing AGN activity and its feedback on the interstellar medium. To follow from first principles all these processes in a fully cosmological context, it would span a dynamical range from << 1pc to >10 Mpc. Moreover, many of processes above are still poorly understood. Thus, simulations genuinely from first principles are at present impossible. Two complementary approaches are usually followed: (i) numerical simulations including gas, i.e. smooth particle hydro-dynamical (SPH) simulations, accounting for phenomenological prescriptions of sub-grid physics (e.g. star formation, feedback, SMBH growth), (ii) semi-analytical models (SAMs), using the prescription approach for every process involving baryons. At the OAPd we are deeply involved in both these projects. In particular, SPH simulations focusing on the bar growth and its evolution, for the first time in a fully cosmological frame , and the first SAM model accounting for the feedback from star formation and AGN activity, have been recently performed. Results from both these approaches help us to shed light on, and may be to solve, several crucial points concerning galaxy evolution.

Cosmological Simulations - PAST STUDIES

News – MEDIA INAF

Il notiziario online dell'Istituto Nazionale di Astrofisica
  • «Ho ancora un sogno prezioso, custodito gelosamente da tempo immemore: poter osservare la volta tersa e stellata del cielo e poterne scorgere il fascino con i miei stessi occhi». Un sogno che l’autrice di questo articolo, Patrizia Faccaro, affetta da retinite pigmentosa, potrà realizzare domani, sabato 14 luglio, all’Osservatorio di Serra La Nave dell’Inaf di Catania

  • Usando in sinergia la potenza dei telescopi spaziali Hubble e Gaia, gli astronomi hanno ottenuto la misurazione a oggi più precisa del tasso di espansione dell'universo: 73.5 km/s per megaparsec. Un risultato che sancisce l’incompatibilità fra il tasso di espansione dell'universo vicino e quello del lontano universo primordiale derivato dalle misure del satellite Planck

  • Tra fotografie ravvicinate ad alta risoluzione, immagini stereoscopiche da ammirare in tre dimensioni e gif animate, il rugoso asteroide a forma di diamante continua a offrirci uno spettacolo senza precedenti

  • Nell’immagine ottenuta con le 64 antenne a parabola del radiotelescopio MeerKat, inaugurate oggi nel deserto del Karoo, è possibile vedere i filamenti che disegnano il centro della nostra galassia: scoperti negli anni Ottanta, sono ancora un mistero per gli scienziati

  • Ecco come un team a guida italiana ha condotto le indagini che hanno portato a incastrare definitivamente il blazar Txs 0506+056 come responsabile del neutrino ad alta energia rivelato il 22 settembre 2017 da IceCube. I risultati sono stati pubblicati su Mnras

  • Per la prima volta si è visto un oggetto celeste emettere sia fotoni sia neutrini. Con il consenso dell’autrice, l’astrofisica dell’Inaf Patrizia Caraveo, vi riproponiamo questo articolo pubblicato sul Sole 24 Ore

Go to top

We use cookies to improve our website and your experience when using it. Cookies used for the essential operation of the site have already been set. To find out more about the cookies we use and how to delete them, see our privacy policy.

I accept cookies from this site.

EU Cookie Directive Module Information