The 40m WaveFront Sensing Experiment

Plot
Figure 1:

 In the framework of the FP6 funding for the design and study on an European Extremely Large Telescope an experiment has been conceived to sense the atmosphere turbulence on a scale of the order of the size of such a telescope. Nominally, a 40m sized patch in the atmosphere can still be measured by using an extremely large Field of View Wavefront Sensor. With this concept in mind the so called "40m WFS Experiment" takes shape. The basic idea is to observe a rich and bright star cluster with a panoramic wavefront sensor having on the focal plane a sinusoidal transmission grating. The movements of the stars because of the atmosphere turbulence modulates the light transmitted through the grating. The stars could moves individually or coherently depending upon where the turbulence occurs. Turbulence occurring very close to the primary mirror, or in other words in the very low altitude layers, happens to influence the stars coherently over a large field of view, while the opposite happens for turbulence occurring far away from the telescope, up in the atmosphere. Moreover, thanks to the very large field of view of the sensor, the beam collected, being of the size of the telescope at its height, that is about 8m, expand with height and, properly choosing the right parameters, reach a diameter of about 40m at a significantly interesting altitude of a few km. In this way one can determine the power spectrum of the turbulence by a direct measurements and not through interpolations that are somehow model depending. Furthermore the frozen layer hypothesis, often recalled as Taylor's hypothesis can be tested thoroughly. Such hypothesis assumes that the time evolution of a layer in its own is much longer than the effect on the starlight image because of the drifting wind. Both these measurements are of large impact in the design of an ELT. The first measurements gives directly the maximum stroke of a Deformable Mirror needed for such a telescope, while the second open the opportunity to achieve wavefront sensing with integrations times much larger than the usual, allowing for using very faint stars to perform very wavefront sensing and hence augmenting the sky coverage. The design actually consists of four independent wide field sensors to be attached to the foci of a VLT telescope.

People: C. Arcidiacono, A. Baruffolo, M. Dima, J. Farinato, R. Ragazzoni

Collaboration: INAF OA Bologna, Nice Univ., ESO, Instituto de Astrofisica de Canarias

Publications: Metti et al. (2008), SPIE 7012,143

News – MEDIA INAF

Il notiziario online dell'Istituto Nazionale di Astrofisica
  • Un telegramma astronomico pubblicato ieri dal team del satellite Agile dà notizia di un improvviso incremento nell’emissione gamma della Nebulosa del Granchio. Ce ne parla Marco Tavani dell’Inaf Iaps di Roma, responsabile scientifico della missione

  • Serena è la suite di strumenti dedicata allo studio delle particelle presenti nell'ambiente attorno a Mercurio, pronta per decollare a bordo della missione BepiColombo. A lei il compito di raccogliere informazioni sulla tenue atmosfera del pianeta e su come questa interagisca con l'attività del vicino Sole. L'intervista a Stefano Orsini, dell'Inaf, responsabile scientifico di Serena

  • Grazie alla potenza del radiotelescopio Alma, una nuova ricerca britannica ha individuato un segno distintivo negli anelli di polvere dei dischi protoplanetari che indica lo spostamento in corso di un pianeta verso una sistemazione gravitazionalmente più consona. Secondo lo studio guidato dall'Università di Warwick, a fare la differenza è la dimensione dei grani di polvere

  • Attraverso collisioni fra ioni di xeno, prodotte al Cern con Lhc e analizzate con l'esperimento Alice, è stato possibile ricostruire proprietà fondamentali del plasma di quark e gluoni che costituiva la materia dell'universo all'epoca del Big Bang

  • Con il telescopio spaziale Hubble gli studiosi cercano di capire come l’intensa emissione di raggi ultravioletti da parte delle stelle nane rosse influenzi i pianeti nella zona abitabile. Fra gli autori dello studio, Isabella Pagano dell’Inaf di Catania

  • Si chiama More, acronimo per Mercury Orbiter Radioscience Experiment, e riflettendo come uno specchio complessi segnali radio ad altissima frequenza, inviati da due enormi antenne terrestri, permetterà alla missione Esa BepiColombo di tracciare una sorta di tomografia dell’interno di Mercurio. E di mettere alla prova la Relatività generale di Einstein

Go to top

We use cookies to improve our website and your experience when using it. Cookies used for the essential operation of the site have already been set. To find out more about the cookies we use and how to delete them, see our privacy policy.

I accept cookies from this site.

EU Cookie Directive Module Information