Fondo cosmico a micro-onde (CMB)

Il fondo cosmico a micro-onde (CMB) è il residuo delle fasi iniziali dell'Universo, estremamente calde e dense. Il suo spettro di corpo nero ha il massimo a circa 2 mm (150 GHz) e la sua intensità domina il cielo ad alta latitudine galattica a tutte le lunghezze d'onda tra 20 cm a 500 micron circa. Poco dopo la sua scoperta, nel 1965, ci si rese conto che le fluttuazioni di densità , da cui è nata la struttura dell’Universo attuale, devono aver lasciato traccia in piccole anisotropie della temperatura del fondo cosmico, rilevate per la prima volta nel 1992 dal satellite COBE della NASA. Lo spettro di potenza delle anisotropie del CMB contiene, codificate, informazioni dettagliate sui parametri cosmologici fondamentali. Una serie impressionante di esperimenti, culminati con il lancio del satellite della NASA detto WMAP, Wilkinson Microwave Anisotropy Probe, ha permesso di stabilire che la geometria dell'universo è quasi piatta, che l’universo e’ dominato da energia oscura, che e’ circa il 70% della densità di energia cosmica, da materia oscura, che comprende circa l'85% della densità di materia, e che le fluttuazioni primordiali hanno avuto uno spettro quasi indipendente dalla scala, in linea con l’idea che siano emerse da una fase primordiale inflazionistica. Nello scenario inflazionistico, l’energia del vuoto domina la densità di energia dell'universo durante le prime fasi, e guida un’ espansione esponenziale in grado di trasformare, quasi stirandolo, un cammino microscopico in una dimensione molto più grande del nostro universo visibile, rendendo la sua geometria piatta con alta precisione.

L'inflazione primordiale ci permette anche di mettere dei vincoli sull'origine e le proprietà statistiche delle perturbazioni primordiali. La tremenda espansione inflazionistica consente di superare il divario tra le dimensioni subatomiche, sulla cui scala sono generate fluttuazioni quantistiche, e le dimensioni astrofisiche, collegando i semi delle strutture che osserviamo oggi nell'universo alle fluttuazioni quantistiche originate circa 10 ^ (-35) secondi dopo il big bang. In altre parole, dalle anisotropie del CMB, che sono direttamente connesse alle fluttuazioni di densità primordiali, impariamo a comprendere i processi fisici che avvengono ad energie estreme, irraggiungibili in qualsiasi acceleratore immaginabile sulla Terra. Così lo studio della CMB ci riporta alle domande più profonde sull'origine dell'universo. Anche se lo scenario inflazionistico offre una serie impressionante di risposte, la fisica su cui si basa non è ancora ben compresa, e abbiamo bisogno di scendere più a fondo nella straordinaria ricchezza delle informazioni contenute nelle mappe del CMB. Il passo successivo in questa direzione è dato dal satellite Planck, sviluppato dall'Agenzia Spaziale Europea (ESA) come missione definitiva per lo studio delle anisotropie della temperatura del fondo cosmico dato che ne consente lo studio su scale di 5 minuti d'arco e che rappresenta un notevole passo avanti verso misure di polarizzazione del CMB estese a tutto il cielo. All'interno del consorzio internazionale Planck, il gruppo di Padova si sta occupando della "separazione delle componenti " per lo strumento a bassa frequenza. Lo scopo di questo sforzo è, da un lato, eliminare dalle mappe del CMB prodotte da Planck nell’intervallo di frequenza 30 - 860 GHz, i segnali sovrapposti e, dall'altro lato, ricostruire il più accuratamente possibile ciascuna singola componente che abbia un interesse astrofisico.

News – MEDIA INAF

Il notiziario online dell'Istituto Nazionale di Astrofisica
  • Un telegramma astronomico pubblicato ieri dal team del satellite Agile dà notizia di un improvviso incremento nell’emissione gamma della Nebulosa del Granchio. Ce ne parla Marco Tavani dell’Inaf Iaps di Roma, responsabile scientifico della missione

  • Serena è la suite di strumenti dedicata allo studio delle particelle presenti nell'ambiente attorno a Mercurio, pronta per decollare a bordo della missione BepiColombo. A lei il compito di raccogliere informazioni sulla tenue atmosfera del pianeta e su come questa interagisca con l'attività del vicino Sole. L'intervista a Stefano Orsini, dell'Inaf, responsabile scientifico di Serena

  • Grazie alla potenza del radiotelescopio Alma, una nuova ricerca britannica ha individuato un segno distintivo negli anelli di polvere dei dischi protoplanetari che indica lo spostamento in corso di un pianeta verso una sistemazione gravitazionalmente più consona. Secondo lo studio guidato dall'Università di Warwick, a fare la differenza è la dimensione dei grani di polvere

  • Attraverso collisioni fra ioni di xeno, prodotte al Cern con Lhc e analizzate con l'esperimento Alice, è stato possibile ricostruire proprietà fondamentali del plasma di quark e gluoni che costituiva la materia dell'universo all'epoca del Big Bang

  • Con il telescopio spaziale Hubble gli studiosi cercano di capire come l’intensa emissione di raggi ultravioletti da parte delle stelle nane rosse influenzi i pianeti nella zona abitabile. Fra gli autori dello studio, Isabella Pagano dell’Inaf di Catania

  • Si chiama More, acronimo per Mercury Orbiter Radioscience Experiment, e riflettendo come uno specchio complessi segnali radio ad altissima frequenza, inviati da due enormi antenne terrestri, permetterà alla missione Esa BepiColombo di tracciare una sorta di tomografia dell’interno di Mercurio. E di mettere alla prova la Relatività generale di Einstein

Vai all'inizio della pagina

We use cookies to improve our website and your experience when using it. Cookies used for the essential operation of the site have already been set. To find out more about the cookies we use and how to delete them, see our privacy policy.

I accept cookies from this site.

EU Cookie Directive Module Information